Incorporation of Organic Molecules into Metal Sulfides Enhances their Photocatalytic Performance

Bashir Ahmmad Arima

Graduate School of Science and Engineering, Yamagata University

Numerous environmental issues stem from the emission of green house gases (e.g. CO_2 , CO) generated through the combustion of fossil fuels. For a sustainable environment, there is an urgent need for CO₂ reduction strategies or alternative energy sources, such as solar-hydrogen production. Among these, photocatalytic CO_2 reduction or photocatalytic H_2 production from water are considered highly promising solutions. Cadmium sulfide (CdS) has attracted significant attention as a potential photocatalyst for both CO₂ reduction and solar-hydrogen production. However, its practical application is hindered by a major limitation-rapid charge recombination. To address this issue, our research explored a novel strategy: incorporating organic molecules (e.g. phenylalanine, histidine) to the CdS nanoparticles. These organic molecules possess electron-rich aromatic ring structures that function as effective hole scavengers by capturing photo-generated holes, thereby suppressing charge recombination and enhancing photocatalytic activity. Here, the photocatalytic performances of the synthesized nanocomposites were evaluated through H₂ production from water. All modified photocatalysts exhibited higher H₂ production rates compared to pristine CdS. Among them, phenylalanine incorporated CdS showed the highest activity. Furthermore, varying the amount of photocatalyst in a reaction solution revealed that with just 1 mg of photocatalyst, the rate of H_2 production reaches to a maximum of 442 mmol/g (Fig. 1). To the best of our knowledge, this is the highest reported generation rate for CdS with a Pt cocatalyst. These findings suggest that CdS nanocomposite could be a promising approach for efficient solar-hydrogen production and CO₂ reduction.

Corresponding author e-mail : arima@yz.yamagata-u.ac.jp

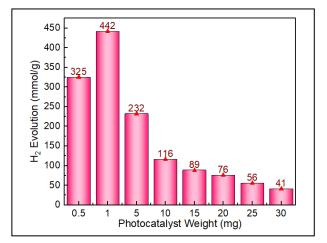


Fig. 1: Evolved H₂ vs the amount of photocatalyst.